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Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the acetic, tartaric and
lactic acids of plum vinegar based on a newly proposed combination of successive projections algo-
rithm-least squares-support vector machine (SPA-LS-SVM). SPA, compared with regression coefficients
(RC), was applied to select effective wavelengths (EWs) with least collinearity and redundancies. Five
concentration levels (100%, 80%, 60%, 40% and 20%) of plum vinegar were studied. Multiple linear regres-
sion (MLR) and partial least squares (PLS) models were developed for comparison. The results indicated
that SPA-LS-SVM achieved the optimal performance for three acids comparing with full-spectrum PLS,
SPA-MLR, SPA-PLS, RC-PLS and RC-LS-SVM. The root mean square error of prediction (RMSEP) was
0.3581, 0.0714 and 0.0201 for acetic, tartaric and lactic acids, respectively. The overall results indicated
that Vis/NIR spectroscopy incorporated to SPA-LS-SVM could be applied as an alternative fast and accu-
rate method for the determination of organic acids of plum vinegars.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, visible and near infrared (Vis/NIR) spectroscopy is
widely employed as alternatives to wet chemistry procedures for
qualitative and quantitative analysis in many fields, such as agri-
culture, pharmaceuticals, food, textiles, cosmetics, and polymer
production industry (Yan, Zhao, Han, & Yang, 2005). The NIR spec-
troscopic analysis is largely depend on chemometric methods for
the quantitative analysis of multicomponent systems or mixtures
because side bands occur as a result of overtones and combination
bands of fundamental vibrations (Bokobza, 1998). Among these
methods, the most used are multiple linear regression (MLR), prin-
ciple component regression (PCR) and partial least squares (PLS)
(Martens & Naes, 1993). These methods can only handle the linear
relationship between spectral data and chemical components.
Whereas it is known that some latent nonlinear information is ex-
isted in the spectral data. In order to make advantage of the nonlin-
ear information as well as the most linear information, some
chemometrics, such as artificial neural network (ANN) (Despagne
& Massart, 1998) and least squares-support vector machine (LS-
SVM) (Suykens, Van Gestel, De Brabanter, De Moor, & Vandewalle,
2002; Suykens & Vandewalle, 1999) are proposed to solve these
problems. Since spectral matrices have large amount of data, they
are too complicated to be trained directly in the ANN or SVM mod-
els. This procedure is time-consuming and not convenient to fulfill
ll rights reserved.
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the high speed features of spectroscopic techniques. Moreover, the
full spectral regions may include wavelengths or wavelength bands
which contribute more collinearity, redundancies and noise than
relevant information to models (Ye, Wang, & Min, 2008). Hence,
some variable selection methods have been proposed for the devel-
opment of a parsimonious model for the quantitative and qualita-
tive analysis.

The commonly used variable selection methods are as follows:
the least condition number of the calibration matrix (Otto & Weg-
scheider, 1985), generalized simulated annealing (Kalivas, Roberts,
& Sutter, 1989), genetic algorithm (Jouan-Rimbaud, Massart,
Leardi, & De Noord, 1995), correlation coefficients and B-matrix
coefficients (Min & Lee, 2005), x-loading weights (Esbensen,
2002; Liu, He, Wang, & Pan, 2007), wavelet transforms (Alsberg,
Woodward, Winson, Rowl, & Kell, 1998), regression coefficients
(Liu, He, & Wang, 2008a,b; Liu et al., 2007), independent compo-
nent analysis (Hyvärinen, Karhunen, & Oja, 2001; Liu et al.,
2008b), modeling power (Liu et al., 2008b; Sagrado & Cronin,
2008) and uninformative variable elimination (Centner et al.,
1996). The successive projections algorithm (SPA) is a newly devel-
oped variable selection strategy for MLR and PLS calibration proce-
dures (Araújo et al., 2001; Galvão et al., 2008). Herein, a new
combination of SPA-LS-SVM is proposed for the determination of
organic acids of plum vinegar using Vis/NIR spectra. SPA-LS-SVM
was thought to be a powerful calibration method using the se-
lected relevant variables as well as the linear and nonlinear spec-
tral information. Recently, NIR spectroscopy has been applied for
the discrimination of aging of vinegar during storage (Casale,
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Abajo, Sáiz, Pizarro, & Forina, 2006), and prediction of chemical
constituents such as organic acids during storage and aging
(Sáiz-Abajo, González-Sáiz, & Pizarro, 2006), reducing sugars (Fu,
Yan, Chen, & Li, 2005), total procyanidins (García-Parrilla, Heredia,
Troncoso, & González, 1997), soluble solids content and pH of rice
vinegar (Liu et al., 2008a) and discrimination of fruit vinegar vari-
eties (Liu et al., 2008b). However, up to our knowledge, there were
few reports on the determination of acetic, tartaric and lactic acids
of plum vinegar using Vis/NIR spectroscopy and few studies
focused on the incorporated SPA-LS-SVM method.

The objective of this paper is (1) to study the feasibility of using
Vis/NIR spectroscopy to determine acetic, tartaric and lactic acids
of plum vinegar; (2) to compare and evaluate the effective wave-
lengths (EWs) selected by successive projections algorithm (SPA)
and regression coefficients (RC) and (3) to evaluate the newly pro-
posed combination of SPA-LS-SVM method compared with MLR
and PLS.

2. Materials and methods

2.1. Sample preparation

Plum vinegars with different batches of producing times were
obtained in local market and they were all fermented vinegars.
All plum vinegar samples were stored in the laboratory at a con-
stant temperature of 25 ± 1 �C for more than 48 h to equalize the
temperature. The original vinegar was diluted by distilled water.
Five concentration levels (100%, 80%, 60%, 40% and 20%, v/v%) of
original plum vinegar were prepared for the experiment. The dilu-
tion operation was based on the following four reasons. Firstly, the
original plum vinegar had a high concentration of acids and it was
not suitable for direct drink. The instructions of drinking plum vin-
egar also suggested using dilution operation for three to five times
of original vinegar. This could meet the tastes of different people.
Secondly, the dilution could expand the ranges of acid concentra-
tion. The wide range could make the samples in calibration set
more general and robust. The samples of different batches were
thought to be independent samples. Hence, the development
model could be more stable and robust. Thirdly, the predictive abil-
ity of calibration model would be more powerful with the wide
ranges of acid concentration. The prediction precision and general-
ization was higher because the calibration model covered a large
range of acid concentration level. Fourthly, the develop model
would be more suitable for in situ fermentation monitoring be-
cause the concentration of acid is not one fixed value and the con-
centration is kept changing during the fermentation stage. Sixty
samples for each level and a total of 300 samples were prepared
for spectral and chemical analysis. All vinegar samples were ran-
domly divided into three data sets. The calibration set consisted
of 150 samples with 30 for each level, the validation set consisted
of 75 samples with 15 for each level, and the remaining samples
were separated for prediction set. No single sample was used in
calibration, validation and prediction sets at the same time. The
calibration and validation sets were used for model-building, and
the prediction set was applied for performance evaluation purpose.

2.2. Spectral collection and preprocessing

A handheld FieldSpec Pro FR (325–1075 nm)/A110070 spectro-
radiometer with Trademarks of Analytical Spectral Devices, Inc.
(Analytical Spectral Devices, Boulder, USA) was applied for the
spectral scanning. The field-of-view (FOV) of the spectroradiometer
is 25�. The light source consists of a Lowell pro-lam interior light
source assemble/128930 with Lowell pro-lam 14.5 V Bulb/128690
tungsten halogen bulb that could be used both in visible and near
infrared region (325–1075 nm). The energy of light source could
be adjusted according to the standard curve of spectroradiometer.
The transmission mode was applied in this experiment. Fruit vine-
gar sample was placed in a cuvette with a 2 mm light path length.
The transmission spectra were measured from 325 to 1075 nm
with an average reading of 30 scans for each spectrum. For each
sample, three replicate spectra were collected and the averaged
spectrum of these three replicates was used as the data of this sam-
ple. All spectral data were stored in a personal computer and pro-
cessed using the RS3 software for Windows (Analytical Spectral
Devices, Boulder, USA) designed with a Graphical User Interface.

Before the calibration stage, the spectral data should be prepro-
cessed for an optimal performance. The transmission spectra were
transformed into absorbance (absorbance = log(1/T)). The pretreat-
ments were implemented by ‘‘The Unscrambler� 9.6” (CAMO AS,
Oslo, Norway). The influence of the following data preprocessing
methods had been compared including Savitzky–Golay smoothing
(SG), multiplicative scatter correction (MSC), standard normal variate
(SNV), and first and second derivative (1-derivative and 2-derivative).

2.3. Organic acid analysis

The reference value of organic acids were determined by high
performance liquid chromatography (HPLC) with Trademarks of
Waters 2695 (Waters, Milford, MA, USA). All plum vinegar samples
were centrifuged at 10,000 rpm, and then were filtered through a
0.22 lm membrane prior to HPLC analysis. The instrument was
equipped with a 717+ automatic injector with 20 lL once, and a
2996 Photodiode Array detector (PDA) UV at 210 nm. Separation
was achieved using an Agilent Zorbax SB-C18 column (5 lm,
4.6 � 250 mm) at 25 �C. The mobile phase was 5/95 (v/v) metha-
nol/water with flow rate of 1.0 mL/min. 0.01 mol/L potassium
dihydrogen phosphate solution was used with pH of 2.6. The run-
ning time was set as 8 min. The settings were based on several tri-
als and previous similar studies (Gao, Liao, Wang, & Hu, 2004). All
organic acids were recorded on a computer-based data system.

2.4. Successive projections algorithm

SPA is a forward variable selection algorithm for multivariate cal-
ibration (Araújo et al., 2001; Galvão et al., 2008). SPA performs sim-
ple projection operations in a vector space to obtain subsets of useful
variables with small collinearity. The main points are summarized
here. Firstly, set the maximum number of variables N to be selected
before a start vector is chosen in a space of n-dimensions (where n is
the number of original variables). Subsequently, in an orthogonal
sub-space, the vector of higher projection is selected and becoming
the new starting vector. The choice of the orthogonal sub-space at
each iteration is made in order to select only the non-collinear vari-
ables. The optimal initial variable and number of variables can be
determined on the basis of the smallest root mean square error of
validation (RMSEV) in validation set of MLR calibration. The details
of SPA could be found in the literatures (Araújo et al., 2001; Galvão
et al., 2008). Moreover, the selected variables, named EWs, could
be used as the inputs of MLR, PLS and LS-SVM models.

2.5. PLS and RC analysis

Partial least squares (PLS) analysis is a widely utilized multi-
analysis and regression method for the spectroscopy analysis
(Geladi & Kowalski, 1986; Martens & Naes, 1993). PLS analysis
can be applied to develop a calibration model to progress the rela-
tionship between the spectral data and organic acids of plum vin-
egar. PLS analysis was also used as a way to select the effective
wavelengths (EWs) by regression coefficient (RC) analysis. The
regression coefficients calculated from the spectral data could cal-
culate the response value Y-variables from the X-variables. The size



Fig. 1. The absorbance spectra of plum vinegars with five concentration levels.
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of the coefficients gave an indication of which variables had the
important impact on the response variables (Y). Its task was to find
which variables were important for predicting Y-variable. Large
absolute values indicated the importance and the significance of
the effect on the prediction of Y-variable preference. The regression
coefficients were calculated by the software ‘‘The Unscrambler�

9.6”. Hence, these selected EWs could be employed as the input
data matrix of PLS and LS-SVM models.

2.6. LS-SVM

Least squares-support vector machine (LS-SVM) is a state-of-
the-art learning algorithm with a good theoretical foundation in
statistical learning method. LS-SVM is capable of dealing with lin-
ear and nonlinear multivariate analysis and resolving these prob-
lems in a relatively fast way (Suykens & Vandewalle, 1999;
Suykens et al., 2002). It employs a set of linear equations instead
of quadratic programming (QP) problems to obtain the support
vectors (SVs). SVM embodies the structural risk minimization
(SRM) principle instead of traditional empirical risk minimization
(ERM) principle to avoid overfitting problems. The details of LS-
SVM algorithm could be found in the literatures (Guo, Liu, & Wang,
2006; Suykens et al., 2002). Before the application of LS-SVM, three
crucial problems were required to solve, including the optimal in-
put data set, proper kernel function and the optimal LS-SVM
parameters. The optimal inputs had been settled by using the
aforementioned EWs. Radial basis function (RBF) kernel as a non-
linear function was a more compacted supported kernel and able
to reduce the computational complexity of the training procedure.
Simultaneously, RBF kernel could handle the nonlinear relation-
ships between the spectra and target attributes and give a good
performance under general smoothness assumptions. Thus, RBF
kernel was recommended as the kernel function of LS-SVM in this
paper. There were two significant parameters to be decided in the
LS-SVM model. The regularization parameter gam (c) determined
the tradeoff between minimizing the training error and minimiz-
ing model complexity. The parameter sig2 (r2) of RBF kernel func-
tion was the bandwidth and implicitly defines the nonlinear
mapping from input space to some high dimensional feature space.
In order to obtain the optimal combination of (c, r2), a two-step
grid search technique was employed with leave-one-out cross val-
idation to avoid overfitting problems. The ranges of c and r2 within
(10�2–105) were set based on experience and previous researches
(Liu et al., 2008a,b). Grid search tries values of each parameter
across the specified search range using geometric steps. The first
step grid search was for a crude search with a large step size and
the second step for the specified search with a small step size. After
the process of grid search, the optimal combination of (c, r2) would
be achieved for the LS-SVM models. All the calculations were per-
formed using MATLAB� 7.0 (The Math Works, Natick, USA). The
free LS-SVM toolbox (LS-SVM v 1.5, Suykens, Leuven, Belgium)
was applied with MATLAB 7.0 to develop the calibration models.

The evaluation indices of predictive capability for all developed
models were correlation coefficients (r) and root mean square error
of validation (RMSEV) and prediction (RMSEP), as in previous pa-
pers (Araújo et al., 2001; Galvão et al., 2008). Generally, a good
model should have higher correlation coefficients value, lower
RMSEV and RMSEP values.

3. Results and discussion

3.1. Spectral features

The raw absorbance spectra of plum vinegar are shown in Fig. 1.
As can be seen, the trends of the spectra with different concentra-
tion levels were similar, and there were no obvious peaks and val-
leys in the absorbance spectra within the regions of 400–1000 nm.
Moreover, there were some noise at the beginning and end parts of
raw spectra. Hence, some pretreatments as stated above were
compared for optimal prediction performance. The ranges of acetic
acid, tartaric acid and lactic acid were 5.048–25.385, 1.188–6.112
and 0.091–0.539 g L�1, respectively for all five concentration levels
of plum vinegar. The reference values of organic acids covered a
large scope which was good to develop a stable and robust calibra-
tion model.

3.2. Selection of EWs

As stated above, SPA was used for the selection of EWs for the
determination of three organic acids of plum vinegar. It was worth
noting that the validation set was applied for the guidance of selec-
tion of candidate subsets of variables. The prediction set was uti-
lized in the final performance evaluation of the resulting models.
It was not applied in any step of the calibration and validation pro-
cedures. A SPA-MLR procedure was applied for the calculation of a
sequence of root mean square error of validation (RMSEV) values
using the selected variable subsets. This process confirmed the
achievement of the optimal number of selected EWs with an opti-
mal RMSEV value, and this RMSEV value was not significantly lar-
ger than the minimum RMSEV value. The maximum number of
selected EWs was set as 30. The influences of different preprocess-
ing methods were compared including SG smoothing, SNV, first
and second derivative. The results indicated that the raw spectra
without preprocessing obtained the optimal validation results.
Herein, only the results using raw spectra were shown for compar-
ison with other calibration methods.

The scree plots for the selected number of EWs of each organic
acid by applying SPA are shown in Fig. 2a–c. As can be seen, a sharp
fall is shown in the starting part of the RMSEV curve as the number
of selected EWs is increased from one to three. This indicated that
the number of selected EWs should be three for the resolution of
spectral overlapping features of the analytes. The trends of RMSEV
curve are still descent after that point but the improvement be-
comes marginal with further increasing number of selected EWs,
and thus the curve tends to level off after the determination of se-
lected EWs by SPA cutoff procedure by F-test criterion with
a = 0.25 (Galvão et al., 2008). The numbers of selected EWs for ace-
tic, tartaric and lactic acids were 12, 15 and 19, respectively. The
selected EWs (circle markers) corresponding to raw spectra are
shown in Table 1 and Fig. 2d–f for acetic, tartaric and lactic acids,
respectively. As can be seen in Table 1, the selected EWs by SPA
are sequenced in the order of relevance. This indicated that wave-
length at 944 nm was the most relevant variable of 12 selected
EWs for the prediction of acetic acid of plum vinegar. Comparing



Fig. 2. RMSEV plots obtained for acetic acid (a), tartaric acid (b) and lactic acid (c). The selected EWs (shown in circle markers) for acetic, tartaric and lactic acids are presented
in (d), (e), and (f), respectively.

Table 1
The selected EWs for three organic acids by SPA and RC.

Organic acid Methods No. Selected EWs (nm)

Acetic acid SPA 12 944, 951, 462, 902, 431, 978, 988, 409, 406, 944, 947, 940
RC 8 406, 417, 918, 925, 944, 979, 993, 998

Tartaric acid SPA 15 944, 951, 462, 902, 431, 978, 988, 409, 406, 944, 981, 947, 940, 995, 992
RC 8 406, 417, 918, 925, 944, 979, 993, 996

Lactic acid SPA 19 431, 771, 963, 959, 940, 970, 880, 891, 951, 932, 954, 403, 902, 998, 989, 417, 978, 406, 946
RC 6 406, 417, 918, 944, 979, 993
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the selected EWs for all three acids, the EWs for acetic acid and tar-
taric acid were almost the same, except that three more EWs (981,
995 and 992 nm) were chosen for tartaric acid. Moreover, the rel-
evant sequence was same for the first ten EWs (seen in Table 1).
The 19 EWs for lactic acid were quite different and only 7 EWs
were identical with acetic and tartaric acids. The difference of se-
lected EWs indicated that three different organic acids had differ-
ent latent spectral features. Similar results could also be
discovered with an inspection of RMSEV scree plots from Fig. 2a–
c. The curves of Fig. 2a and Fig. 2b were quite similar from the first
to the fifth variable (indicated by number 1–5 in Fig. 2a and
Fig. 2b). The trend was flat for the first to the second variable, then
a sharp fall to the third variable, and a marginal improvement to
the fifth variable. From the fifth variable, a gradual descent was ap-
peared to the selected number of variables. However, the RMSEV
plots for lactic acid (Fig. 2c) was different from Fig. 2a and
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Fig. 2b with a initial sharp fall for the first to the second variable,
then a step descent to the selected number of variable.

For comparison, another variable selection method by regres-
sion coefficients was applied in this study. PLS analysis was uti-
lized to develop a model with calibration and validation sets. The
validation set was used to evaluate the calibration performance,
and to achieve the optimal calibration model. The influences of
the aforementioned preprocessing were compared, and the results
indicated that pretreatment of SG and SNV was necessary for a bet-
ter performance. Hence, the EWs were selected by RC after PLS
analysis. The cutoff criterion was set as ±1.0, ±0.25 and ±0.02 for
acetic, tartaric and lactic acids, respectively. This criterion was set-
tled based on experience and previous studies (Liu et al., 2008b).
The plots of regression coefficients are shown in Fig. 3a–c for ace-
tic, tartaric and lactic acids, respectively. The dot lines indicated
the upper and lower cutoff threshold values. The trends of these
three curves were quite similar, and similar EWs were also selected
as relevant variables. The selected EWs (circle markers) corre-
sponding to the preprocessed spectrum by SG and SNV are shown
Fig. 3. The regression coefficients plots obtained for acetic acid (a), tartaric acid (b) and
selected EWs (shown in circle markers) for acetic, tartaric and lactic acids are presented
in Table 1 and Fig. 3d–f for acetic, tartaric and lactic acids, respec-
tively. The selected EWs for acetic and tartaric acid were almost
the same except one EW as 998 nm for acetic acid, whereas 996
for tartaric acid. The selected 6 EWs for lactic acid were included
in the EWs for acetic and tartaric acids. Compared with SPA, some
EWs were both selected by SPA and RC, and they were 406 and
944 nm for both acetic and tartaric acids, whereas 406 and
417 nm for lactic acid. However, most of the EWs selected were
not the same by SPA and RC. This might indicated the different
mechanism of SPA and RC for variable selection.

3.3. Calibration models and prediction performance

Firstly, the full-spectrum PLS models were developed without
variable elimination for the prediction of three organic acids. The
performance was validated by the samples in prediction set. Differ-
ent latent variables (LVs) were used in PLS models for prediction of
different chemical components. The performance of different pre-
processing methods was compared, and the results are shown in
lactic acid (c). The two dot lines indicate the lower and upper cutoff threshold. The
in (d), (e), and (f), respectively.
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Table 2 for acetic, tartaric and lactic acids, respectively. As can be
seen, the preprocessing of SG and SNV obtained the optimal perfor-
mance for all three organic acids with highest correlation coeffi-
cients (r) values and least RMSEV/RMSEP values. Then the raw
spectra performed better than the first and second derivative spec-
tra. The reason might be that the treatment of first and second
derivative brought in some noise which impaired the prediction
ability of developed models.

Secondly, SPA-MLR models were developed using the selected
EWs by SPA for the prediction of three organic acids of plum vine-
gar. The performance was also evaluated by 75 samples in predic-
tion set. The prediction results are shown in Table 2. Herein, only
the optimal calibration was shown applying raw spectra. As can
be seen, in the validation set, the SPA-MLR model was slightly bet-
ter than PLS models with SG and SNV spectra for all three organic
acids. However, for the prediction set, full-spectrum PLS (SG and
SNV) models performed slightly better than SPA-MLR models. It
is worth mentioning that SPA-MLR models also performed an
acceptable result considering the largely reduced number of
variables.

Thirdly, PLS models were also developed using the EWs selected
by SPA and RC. The SPA-PLS models were developed based on raw
spectra, whereas RC-PLS models were developed using the prepro-
cessed spectra by SG and SNV. The prediction results are shown in
Table 2. As can be seen, all SPA-PLS models outperformed RC-PLS
models for three organic acids. This indicated that the EWs se-
lected by SPA were more powerful than those by RC. All RC-PLS
models were not as good as full-spectrum PLS (SG and SNV) mod-
els for these three acids. However, SPA-PLS model yielded slightly
better results than PLS (SG and SNV) model in validation set for the
prediction of tartaric acid (seen in Table 2). On the overall, SPA-PLS
models slightly outperformed SPA-MLR models in the prediction
Table 2
The prediction results of organic acids of plum vinegar by different models.

Models Preprocessing EWs/LVs/(c, r2)

Acetic acid
PLS Raw 601/2/–

SG + SNV 601/4/–
1-derivative 601/2/–
2-derivative 601/3/–

SPA-MLR Raw 12/–/–
SPA-PLS Raw 12/3/–
RC-PLS SG + SNV 8/3/–
SPA-LS-SVM Raw 12/–/(3.1 � 104, 9.8)
RC-LS-SVM SG + SNV 8/–/(30.9, 4.9)

Tartaric acid
PLS Raw 601/2/–

SG + SNV 601/4/–
1-derivative 601/2/–
2-derivative 601/3/–

SPA-MLR Raw 15/–/–
SPA-PLS Raw 15/4/–
RC-PLS SG + SNV 8/2/–
SPA-LS-SVM Raw 15/–/(2.5 � 103, 10.0)
RC-LS-SVM SG + SNV 8/–/(39.2, 9.5)

Lactic acid
PLS Raw 601/2/–

SG + SNV 601/4/–
1-derivative 601/2/–
2-derivative 601/3/–

SPA-MLR Raw 19/–/–
SPA-PLS Raw 19/2/–
RC-PLS SG + SNV 6/2/–
SPA-LS-SVM Raw 19/–/(5.0 � 103, 7.7)
RC-LS-SVM SG + SNV 6/–/(14.9, 2.1)

a Correlation coefficients of validation set.
b Correlation coefficients of prediction set.
set for three acids, except that the correlation coefficients (r) values
were a little lower for acetic (0.9777 < 0.9799) and lactic
(0.9760 < 0.9783) acids.

Finally, the LS-SVM models were developed using the selected
EWs by SPA and RC for the determination of organic acids of plum
vinegar. The EWs were used as the inputs of LS-SVM models to de-
velop SPA-LS-SVM and RC-LS-SVM models in order to reduce the
training time. It was important to notice that the training time
using LS-SVM increased with the square of the number of training
samples and linearly with the number of variables (dimension of
spectra) (Chauchard, Cogdill, Roussel, Roger, & Bellon-Maurel,
2004). Hence, the application of EWs would be helpful for the
reduction of computation time. RBF kernel was recommended as
the kernel function as analyzed above. The optimal model param-
eters (c, r2) were determined by the two-step grid search tech-
nique with leave-one-out validation procedure. The searching
ranges were set within (10�2–105), and the optimal values were
achieved with (3.1 � 104, 9.8), (2.5 � 103, 10.0) and (5.0 � 103,
7.7) by SPA-LS-SVM model, whereas (30.9, 4.9), (39.2, 9.5) and
(14.9, 2.1) by RC-LS-SVM model for acetic, tartaric and lactic acids,
respectively. The performance was validated by prediction set. The
results are shown in Table 2. As can be seen, all SPA-LS-SVM mod-
els for three acids yielded better results than RC-LS-SVM models
for both validation and prediction sets. This revealed that SPA
was more powerful than RC for the selection of EWs as in the
PLS models. However, all RC-LS-SVM models yielded better results
than RC-PLS models. The reason might be that LS-SVM could make
advantage of the latent nonlinear information of the spectral data
which contributed a better prediction performance. On the overall,
SPA-LS-SVM models achieved the optimal results among all devel-
oped models for the prediction of all three organic acids. The
RMSEP values were 0.3581, 0.0714 and 0.0201 for acetic, tartaric
Validation set Prediction set

Ra RMSEV rb RMSEP

0.9769 1.5609 0.9794 1.5181
0.9878 1.1176 0.9885 1.1633
0.8952 3.2220 0.8522 4.2076
0.8566 3.7549 0.7253 5.4954
0.9937 0.8064 0.9799 1.6438
0.9843 1.2801 0.9777 1.5904
0.9627 2.0124 0.9654 1.8812
0.9990 0.2851 0.9985 0.3581
0.9915 0.9497 0.9798 1.6536

0.9769 0.3719 0.9792 0.3641
0.9878 0.2662 0.9883 0.2801
0.8951 0.7865 0.8500 1.0078
0.8563 0.8963 0.7239 1.3123
0.9935 0.1963 0.9830 0.3944
0.9920 0.2173 0.9838 0.3513
0.9592 0.4827 0.9622 0.4719
0.9995 0.0475 0.9990 0.0714
0.9854 0.2900 0.9823 0.4152

0.9748 0.0308 0.9758 0.0310
0.9876 0.0213 0.9842 0.0254
0.8945 0.0612 0.8474 0.0810
0.8575 0.0709 0.7240 0.1048
0.9915 0.0176 0.9783 0.0330
0.9763 0.0298 0.9760 0.0312
0.9531 0.0411 0.9498 0.0432
0.9970 0.0104 0.9889 0.0201
0.9920 0.0182 0.9854 0.0289
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and lactic acids, respectively. This indicated that the new combina-
tion of SPA-LS-SVM was powerful and successful for the acid pre-
diction in this specific study. SPA selected the most informative
variables, and LS-SVM made good use of these EWs for calibration.
The combination of SPA-LS-SVM offered the optimal prediction
performance for the determination of organic acids of plum
vinegar.

The overall results indicated that Vis/NIR spectroscopy com-
bined with SPA-LS-SVM was successfully applied for the determi-
nation of acetic, tartaric and lactic acids of plum vinegar.
Moreover, the results demonstrated that SPA was a powerful way
for the selection of EWs which were relevant for spectroscopic
analysis. Some further improvements could be made for the new
SPA-LS-SVM method. Firstly, SPA was mainly focused on the selec-
tion of effective wavelengths with least collinearity and redundan-
cies. Some attention should be paid on the relationship between
the selected wavelengths and the molecular bands of acetic, tar-
taric and lactic acids. This would be helpful for us to understand
the correlation between the wavelength and organic acids of plum
vinegar. Moreover, the RBF kernel function could be replaced by
other kernels such as linear kernel, polynomial kernel, and multi-
layer perceptron (MLP) in other applications when using SPA-LS-
SVM method. Then the optimal kernel could be settled for the
specific case. As is well known, the model developed by NIR spec-
troscopy has some limitations for its generalization. The model
developed in this paper was most suitable for the case of determi-
nation of acids of plum vinegar. The proposed new approach of
SPA-LS-SVM would be helpful for other applications. The model
would also be applicable for other vinegars which had similar
acids, such as apple cider vinegar and other fruit vinegars. If a more
precise model needed for other vinegar, the samples of the vinegar
should be added to the calibration set, and an expanded model
could be developed using SPA-LS-SVM method. Then the predic-
tion precision of the expanded model would be strengthened,
and the generalization and robustness could be improved for more
varieties of vinegars. Further studies would be focused on the fur-
ther optimization of selected EWs by SPA, the relationship between
the selected EWs and corresponding chemical components, and the
generalization of an expanded model with other similar vinegars.

4. Conclusion

Vis/NIR spectroscopy combined with SPA-LS-SVM regression
method was successfully utilized for the determination of acetic,
tartaric and lactic acids of plum vinegar. SPA was proposed as a
new powerful way for the selection of EWs, and the new developed
combination of SPA-LS-SVM achieved the optimal prediction per-
formance for all three acids comparing with full-spectrum PLS,
SPA-MLR, SPA-PLS, RC-PLS and RC-LS-SVM models. The best pre-
diction results by SPA-LS-SVM were that the RMSEP values for val-
idation set were 0.3581, 0.0714 and 0.0201 for acetic, tartaric and
lactic acids, respectively. The overall results indicated that Vis/NIR
spectroscopy incorporated to SPA-LS-SVM could be applied as an
alternative fast and accurate method for the determination of or-
ganic acids of plum vinegars. These results might be useful for
the process and in situ monitoring of vinegar fermentation.
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